103391 103393 103399 103409 103421 103423 103451 103457 103471 103483
46853 46861 46867 46877 46889 46901 46919 46933 46957 46993
To find the first five prime numbers, we start at 2 (remember that 1 is not classed as a prime number). 5 95881 95891 95911 95917 95923 95929 95947 95957 95959 95971
51341 51343 51347 51349 51361 51383 51407 51413 51419 51421
Number Lists. 6 How to calculate the number of prime factors? 40177 40189 40193 40213 40231 40237 40241 40253 40277 40283
49991 49993 49999 50021 50023 50033 50047 50051 50053 50069
13, 109, 193, 433, 769, 1201, 1453, 2029, 3469, 3889, 4801, 10093, 12289, 13873, 18253, 20173, 21169, 22189, 28813, 37633, 43201, 47629, 60493, 63949, 65713, 69313, 73009, 76801, 84673, 106033, 108301, 112909, 115249 (OEIS:A002648), 3, 393050634124102232869567034555427371542904833 (OEIS:A050920). 95131 95143 95153 95177 95189 95191 95203 95213 95219 95231
Number of Additive Primes: 14/25 Number of Carol Primes: 2/25 Number of Chen Primes: 20/25 Number of Circular Primes: 13/25 Number of . Next we test 4. 45541 45553 45557 45569 45587 45589 45599 45613 45631 45641
4861 4871 4877 4889 4903 4909 4919 4931 4933 4937
The numbers p corresponding to Mersenne primes must themselves . 13p 1 1 (mod p2): 2, 863, 1747591 (OEIS:A128667)[20]
2 36293 36299 36307 36313 36319 36341 36343 36353 36373 36383
84523 84533 84551 84559 84589 84629 84631 84649 84653 84659
35407 35419 35423 35437 35447 35449 35461 35491 35507 35509
71119 71129 71143 71147 71153 71161 71167 71171 71191 71209
2 9643 9649 9661 9677 9679 9689 9697 9719 9721 9733
Since any number greater than 5 that ends with 5 can be easily divided by 5. so, it cannot be considered a prime number. For full functionality of this site it is necessary to enable JavaScript. Here is the full list of primes. 84223 84229 84239 84247 84263 84299 84307 84313 84317 84319
such that 56093 56099 56101 56113 56123 56131 56149 56167 56171 56179
(: prime number) 1 2 1 91691 91703 91711 91733 91753 91757 91771 91781 91801 91807
28163 28181 28183 28201 28211 28219 28229 28277 28279 28283
Lists of the first primes. 1153 1163 1171 1181 1187 1193 1201 1213 1217 1223
27239 27241 27253 27259 27271 27277 27281 27283 27299 27329
18251 18253 18257 18269 18287 18289 18301 18307 18311 18313
p Here is JavaScript code to generate a list of an arbitrarily large number of prime numbers. 104087 104089 104107 104113 104119 104123 104147 104149 104161 104173
15p 1 1 (mod p2): 29131, 119327070011 (OEIS:A242741) 69931 69941 69959 69991 69997 70001 70003 70009 70019 70039
68099 68111 68113 68141 68147 68161 68171 68207 68209 68213
3, 7, 11, 19, 23, 31, 43, 47, 59, 67, 71, 79, 83, 103, 107, 127, 131, 139, 151, 163, 167, 179, 191, 199, 211, 223, 227, 239, 251, 263, 271, 283, 307, 311, 331, 347, 359, 367, 379, 383, 419, 431, 439, 443, 463, 467, 479, 487, 491, 499, 503 (OEIS:A002145). 8837 8839 8849 8861 8863 8867 8887 8893 8923 8929
96953 96959 96973 96979 96989 96997 97001 97003 97007 97021
661 673 677 683 691 701 709 719 727 733
74311 74317 74323 74353 74357 74363 74377 74381 74383 74411
92671 92681 92683 92693 92699 92707 92717 92723 92737 92753
1 Explanation: Digits of the number - {1, 2} But, only 2 is prime number. 66947 66949 66959 66973 66977 67003 67021 67033 67043 67049
24419 24421 24439 24443 24469 24473 24481 24499 24509 24517
Wikipedia also lists the twenty highest known prime numbers, only the four smallest on that list have fewer than three million digits.. For some while now, I have been wondering about the smaller prime numbers we haven't found. 2, 5, 11, 101, 181, 1181, 1811, 18181, 108881, 110881, 118081, 120121, for some When are two numbers considered to be relatively prime? 89329 89363 89371 89381 89387 89393 89399 89413 89417 89431
83401 83407 83417 83423 83431 83437 83443 83449 83459 83471
59753 59771 59779 59791 59797 59809 59833 59863 59879 59887
85607 85619 85621 85627 85639 85643 85661 85667 85669 85691
94907 94933 94949 94951 94961 94993 94999 95003 95009 95021
{\displaystyle 0\leq 2n\leq p-3} 8039 8053 8059 8069 8081 8087 8089 8093 8101 8111
82787 82793 82799 82811 82813 82837 82847 82883 82889 82891
Write C program to list all 5 digit prime numbers. with Primes that remain prime when read upside down or mirrored in a seven-segment display. 29063 29077 29101 29123 29129 29131 29137 29147 29153 29167
Input: N = 1032 Output: 2 Explanation: Digits of the number - {1, 0, 3, 2} 3 and 2 are prime number Approach: The idea is to iterate through all the digits of the number and check whether the digit is a prime or not. Where p and 2p + 1 are both prime. Step 2: The number 2 is the first number in the list and it is a prime number too; cross out every 2nd number in the list after 2 by adding 2 or skip counting by 2s. 81817 81839 81847 81853 81869 81883 81899 81901 81919 81929
47837 47843 47857 47869 47881 47903 47911 47917 47933 47939
99761 99767 99787 99793 99809 99817 99823 99829 99833 99839
101503 101513 101527 101531 101533 101537 101561 101573 101581 101599
1 17321 17327 17333 17341 17351 17359 17377 17383 17387 17389
DH with that prime is quite easily breakable. The numbers 0 and 1 are neither considered prime numbers nor composite numbers. 51907 51913 51929 51941 51949 51971 51973 51977 51991 52009
In some sense, 2 % is small, but since there are 9 10 21 numbers with 22 digits, that means about 1.8 10 20 of them are prime; not just three or four! 17977 17981 17987 17989 18013 18041 18043 18047 18049 18059
Five has just two factors: 1 and 5. 70991 70997 70999 71011 71023 71039 71059 71069 71081 71089
Primes p for base 10: 7, 17, 19, 23, 29, 47, 59, 61, 97, 109, 113, 131, 149, 167, 179, 181, 193, 223, 229, 233, 257, 263, 269, 313, 337, 367, 379, 383, 389, 419, 433, 461, 487, 491, 499, 503, 509, 541, 571, 577, 593 (OEIS:A001913). 1297 1301 1303 1307 1319 1321 1327 1361 1367 1373
0 60037 60041 60077 60083 60089 60091 60101 60103 60107 60127
96337 96353 96377 96401 96419 96431 96443 96451 96457 96461
85831 85837 85843 85847 85853 85889 85903 85909 85931 85933
10463 10477 10487 10499 10501 10513 10529 10531 10559 10567
8p 1 1 (mod p2): 3, 1093, 3511 9461 9463 9467 9473 9479 9491 9497 9511 9521 9533
13709 13711 13721 13723 13729 13751 13757 13759 13763 13781
102121 102139 102149 102161 102181 102191 102197 102199 102203 102217
77359 77369 77377 77383 77417 77419 77431 77447 77471 77477
86201 86209 86239 86243 86249 86257 86263 86269 86287 86291
2, 3, 5, 7, 13, 17, 23, 37, 43, 47, 53, 67, 73, 83, 97, 113, 137, 167, 173, 197, 223, 283, 313, 317, 337, 347, 353, 367, 373, 383, 397, 443, 467, 523, 547, 613, 617, 643, 647, 653, 673, 683 (OEIS:A024785). The 13th, 14th, and 51st have respectively 157, 183, and 24,862,048 digits. Factors of 220 are integers that can be divided evenly into 220. 102829 102841 102859 102871 102877 102881 102911 102913 102929 102931
44543 44549 44563 44579 44587 44617 44621 44623 44633 44641
92957 92959 92987 92993 93001 93047 93053 93059 93077 93083
47431 47441 47459 47491 47497 47501 47507 47513 47521 47527
80177 80191 80207 80209 80221 80231 80233 80239 80251 80263
Tweet a thanks, Learn to code for free. 52583 52609 52627 52631 52639 52667 52673 52691 52697 52709
37, 59, 67, 101, 103, 131, 149, 157, 233, 257, 263, 271, 283, 293, 307, 311, 347, 353, 379, 389, 401, 409, 421, 433, 461, 463, 467, 491, 523, 541, 547, 557, 577, 587, 593, 607, 613 (OEIS:A000928), Primes p such that (p, p5) is an irregular pair. 8293 8297 8311 8317 8329 8353 8363 8369 8377 8387
52711 52721 52727 52733 52747 52757 52769 52783 52807 52813
12647 12653 12659 12671 12689 12697 12703 12713 12721 12739
The limit on the input number to factor is less than 10,000,000,000,000 (less than 10 trillion or a maximum of 13 digits). A palindromic prime is a number that is simultaneously palindromic and prime. {\displaystyle \left({\frac {p}{5}}\right)} 39863 39869 39877 39883 39887 39901 39929 39937 39953 39971
75539 75541 75553 75557 75571 75577 75583 75611 75617 75619
The classes 10n+d (d = 1, 3, 7, 9) are primes ending in the decimal digit d. 2n+1: 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53 (OEIS:A065091) ( The first few prime numbers are 2, 3, 5, 7, 11, 13, 17, 19, 23 and 29. b 87121 87133 87149 87151 87179 87181 87187 87211 87221 87223
72139 72161 72167 72169 72173 72211 72221 72223 72227 72229
So 7 is prime. 7507 7517 7523 7529 7537 7541 7547 7549 7559 7561
y Welcome to our First 5 Prime Numbers List page. 5641 5647 5651 5653 5657 5659 5669 5683 5689 5693
6n+5: 5, 11, 17, 23, 29, 41, 47, 53, 59, 71, 83, 89, 101, 107, 113 (OEIS:A007528) 7927 7933 7937 7949 7951 7963 7993 8009 8011 8017
However, you may visit "Cookie Settings" to provide a controlled consent. 74527 74531 74551 74561 74567 74573 74587 74597 74609 74611
31379 31387 31391 31393 31397 31469 31477 31481 31489 31511
14771 14779 14783 14797 14813 14821 14827 14831 14843 14851
21569 21577 21587 21589 21599 21601 21611 21613 21617 21647
[7], 5, 13, 17, 23, 41, 67, 73, 79, 107, 113, 139, 149, 157, 179, 191, 193, 223, 239, 241, 251, 263, 277, 281, 293, 307, 311, 317, 331, 337, 349 (OEIS:A092101). 79537 79549 79559 79561 79579 79589 79601 79609 79613 79621
Primes that are a cototient more often than any integer below it except 1. Roll. p 55001 55009 55021 55049 55051 55057 55061 55073 55079 55103
64609 64613 64621 64627 64633 64661 64663 64667 64679 64693
547 557 563 569 571 577 587 593 599 601
Primes of the form 87481 87491 87509 87511 87517 87523 87539 87541 87547 87553
8747 8753 8761 8779 8783 8803 8807 8819 8821 8831
18433 18439 18443 18451 18457 18461 18481 18493 18503 18517
The number 1 is neither prime nor composite. Throw a Dice. 25703 25717 25733 25741 25747 25759 25763 25771 25793 25799
1 How many 5 digit prime numbers are there? P. Cox, Primes is in P P. J. Davis & R. Hersh, The Mathematical Experience, The Prime Number Theorem 21851 21859 21863 21871 21881 21893 21911 21929 21937 21943
11351 11353 11369 11383 11393 11399 11411 11423 11437 11443
14423 14431 14437 14447 14449 14461 14479 14489 14503 14519
50153 50159 50177 50207 50221 50227 50231 50261 50263 50273
22651 22669 22679 22691 22697 22699 22709 22717 22721 22727
11069 11071 11083 11087 11093 11113 11117 11119 11131 11149
Our Prime Numbers List page is similar to the prime number charts on this page but contains charts 41809 41813 41843 41849 41851 41863 41879 41887 41893 41897
79397 79399 79411 79423 79427 79433 79451 79481 79493 79531
Of the form The first 10 primes that are not cluster primes are: 2, 97, 127, 149, 191, 211, 223, 227, 229, 251. We also have thousands of freeCodeCamp study groups around the world. b Overall, every one of the 5 places of a 5-digit number can be filled up in ten ways, because it can have 0, 1, 2, 3, 4, 5, 6, 7, 8, or 9. 120 numbers Final answer: from the given digits 1,2,3,4,5 we can for 120 numbers which contain 5 digits. 66383 66403 66413 66431 66449 66457 66463 66467 66491 66499
list of all 5 digit prime numbers. Now testing 11. 96233 96259 96263 96269 96281 96289 96293 96323 96329 96331
This include the following: Of the form 3n, where is Mills' constant. Of the form 50077 50087 50093 50101 50111 50119 50123 50129 50131 50147
But one is regarded as a special or unique number because 1 divides evenly by 1 only. x 41681 41687 41719 41729 41737 41759 41761 41771 41777 41801
Where p is prime and p+2 is either a prime or semiprime. 7001 7013 7019 7027 7039 7043 7057 7069 7079 7103
(5, 7, 11), (7, 11, 13), (11, 13, 17), (13, 17, 19), (17, 19, 23), (37, 41, 43), (41, 43, 47), (67, 71, 73), (97, 101, 103), (101, 103, 107), (103, 107, 109), (107, 109, 113), (191, 193, 197), (193, 197, 199), (223, 227, 229), (227, 229, 233), (277, 281, 283), (307, 311, 313), (311, 313, 317), (347, 349, 353) (OEIS:A007529, OEIS:A098414, OEIS:A098415). 34159 34171 34183 34211 34213 34217 34231 34253 34259 34261
419 421 431 433 439 443 449 457 461 463
20707 20717 20719 20731 20743 20747 20749 20753 20759 20771
27773 27779 27791 27793 27799 27803 27809 27817 27823 27827
52147 52153 52163 52177 52181 52183 52189 52201 52223 52237
64081 64091 64109 64123 64151 64153 64157 64171 64187 64189
23459 23473 23497 23509 23531 23537 23539 23549 23557 23561
35771 35797 35801 35803 35809 35831 35837 35839 35851 35863
55109 55117 55127 55147 55163 55171 55201 55207 55213 55217
8n+5: 5, 13, 29, 37, 53, 61, 101, 109, 149, 157, 173, 181, 197, 229, 269 (OEIS:A007521) Get a free sample copy of our Math Salamanders Dice Games book 88807 88811 88813 88817 88819 88843 88853 88861 88867 88873
294001, 505447, 584141, 604171, 971767, 1062599, 1282529, 1524181, 2017963, 2474431, 2690201, 3085553, 3326489, 4393139 (OEIS:A050249). 86491 86501 86509 86531 86533 86539 86561 86573 86579 86587
82349 82351 82361 82373 82387 82393 82421 82457 82463 82469
2, 3, 5, 7, 17, 29, 277, 367, 853, 14197, 43721, 1442968193, 792606555396977, 187278659180417234321, 66241160488780141071579864797 (OEIS:A074788). 3659 3671 3673 3677 3691 3697 3701 3709 3719 3727
25409 25411 25423 25439 25447 25453 25457 25463 25469 25471
14867 14869 14879 14887 14891 14897 14923 14929 14939 14947
A cluster prime is a prime p such that every even natural number k p 3 is the difference of two primes not exceeding p. 3, 5, 7, 11, 13, 17, 19, 23, (OEIS:A038134). 65587 65599 65609 65617 65629 65633 65647 65651 65657 65677
They have been called two-sided primes. 53129 53147 53149 53161 53171 53173 53189 53197 53201 53231
90499 90511 90523 90527 90529 90533 90547 90583 90599 90617
92041 92051 92077 92083 92107 92111 92119 92143 92153 92173
17579 17581 17597 17599 17609 17623 17627 17657 17659 17669
17789 17791 17807 17827 17837 17839 17851 17863 17881 17891
Pediatric Medical Assistant Training Checklist, Averil Phillips Obituaries, Articles OTHER
Pediatric Medical Assistant Training Checklist, Averil Phillips Obituaries, Articles OTHER